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SUMMARY

We discuss the strengths and weaknesses of the meta-analytic approach to estimating the effect of a
new treatment on a true clinical outcome measure, T , from the effect of treatment on a surrogate response,
S. The meta-analytic approach (see Daniels and Hughes, 1997) uses data from a series of previous stud-
ies of interventions similar to the new treatment. The data are used to estimate relationships between
summary measures of treatment effects on T and S that can be used to infer the magnitude of the ef-
fect of the new treatment on T from its effects on S. We extend the class of models to cover a broad
range of applications in which the parameters define features of the marginal distribution of (T, S). We
present a new bootstrap procedure to allow for the variability in estimating the distribution that governs
the between-study variation. Ignoring this variability can lead to confidence intervals that are much too
narrow. The meta-analytic approach relies on quite different data and assumptions than procedures that
depend, for example, on the conditional independence, at the individual level, of treatment and T , given
S (see Prentice, 1989). Meta-analytic calculations in this paper can be used to determine whether a new
study, based only on S, will yield estimates of the treatment effect on T that are precise enough to be
useful. Compared to direct measurement on T , the meta-analytic approach has a number of limitations,
including likely serious loss of precision and difficulties in defining the class of previous studies to be
used to predict the effects on T for a new intervention.
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1. INTRODUCTION

There is great interest in using surrogate endpoints S, in clinical trials, in place of clinically relevant
main (‘true’) endpoints T . Surrogate endpoints may yield response data earlier than main endpoints, and
may require smaller sample sizes. Reliance on surrogates is problematic, however, because it is difficult
to gauge how reliably one can infer effects of treatment on T from data on S.

Much work on surrogate markers attempts to relate an individual’s true response to treatment to that
individual’s surrogate response to treatment. Such research has defined conditions under which measure-
ments on S may be reliably used to test for a treatment effect on the main endpoint, T (Prentice, 1989;
Buyse and Molenberghs, 1998). An essential condition is that T be conditionally independent of treat-
ment given S. Because strict conditional independence may hold only infrequently and is difficult to
confirm, others have considered the related estimation of the ‘percentage of treatment effect explained’
by the surrogate (Freedman et al., 1992; Lin et al., 1997).

This literature on the usefulness of a surrogate for evaluating treatments for the individuals who par-
ticipate in a given study has two limitations. First, there has been comparatively little discussion of how
data on S can be used to estimate the magnitude of the effects of treatment on T . Second, even if in a
particular study of a given drug, data on both T and S confirm that S can be used to predict T reliably for
each individual in the study, whether on the new drug or on the control treatment, it does not follow that
S will be reliable for testing for a treatment effect or for estimating the magnitude of the treatment effect
for another drug in another study. Empirical evidence on these points can derive from a series of studies
on drugs of a given type. This is the rationale for a meta-analytic evaluation of surrogate markers.

Two recent papers used a meta-analytic approach to estimate effects of treatment, Z , on T from data
on S. The idea is that one can ‘borrow information’ from previous similar studies on the relationships
between T and S in treated (Z = 1) and control (Z = 2) groups. Daniels and Hughes (1997) regressed
treatment effects for T on treatment effects for S in a meta-analysis of previous studies on the effects of
anti-retroviral agents, and they used information on the regression relationships to estimate the treatment
effect on T in a new study from an estimate of the treatment effect on S in the new study. In recent work,
Buyse et al. (2000) (BMBRG) proposed a linear mixed model for conducting such a meta-analysis. This
model allows one to estimate treatment effects on T as linear functions of the separate values of S in
treated and untreated groups, rather than simply as a linear function of the estimated treatment effect on
S. We discuss a multivariate normal model closely related to that of BMBRG but with a more general
covariance structure (Section 3.1). The generality can be important if treatment affects not only population
means but also variances or covariances, and for more complex problems (see Sections 2, 3.2, and 3.3).

As pointed out by Daniels and Hughes (1997), it can be difficult to specify a realistic joint distribution
for T and S given Z . For example, analysts may not agree on the joint distribution of T and S for
time-to-response data. For this reason, we introduce separate marginal models for T and for S in treated
and in untreated groups (Section 2). We do not even require that the parameters we estimate completely
define these marginal distributions but only that they characterize important features of the responses to
T and S that can be used to estimate treatment effects on T . These models can accommodate complex
measurements, such as piecewise exponential survival data or repeated measurements (Section 3.3).

In Section 2, we present notation, a general meta-analytic sampling framework and a general formula-
tion. Applications to the normal model (Section 3.1), dichotomous outcomes (Section 3.2), and a general
marginal model for survival (Section 3.3) follow. In Section 4 we discuss the impact of uncertainty in
parameter estimates on the precision of prediction intervals for the treatment effects on the true endpoint.
Data from the REGRESS trial (Jukema et al., 1995) are analyzed in Section 5 to illustrate the method.
We defer a discussion of some of the serious practical and theoretical limitations of the meta-analytic
approach to Section 6.
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2. NOTATION, SAMPLING FRAMEWORK, AND GENERAL FORMULATION

We seek to estimate treatment effects on T for a new drug using only incomplete data on S in the new
study (N ) and using information from K previous ‘similar’ studies with complete data on T and S. A
crucial assumption is that we can identify a class C of similar drug studies to which the current drug study
(N ) is related. The i th drug study in class C is regarded as a random sample from members of this class.
The i th study has parameters θi = (θT

1T i , θ
T
1Si , θ

T
2T i , θ

T
2Si )

T, where (θ1T i , θ2T i ) are features of the marginal
distribution of T in the experimental (Z = 1) and control groups (Z = 2), respectively, and (θ1Si , θ2Si )

are likewise features of the marginal distribution of S for Z = 1 and Z = 2, respectively. The treatment
effect, δi = δ(θ1T i , θ2T i ) is a function of (θ1T i , θ2T i ). We hope that knowledge of θSN = (θT

1SN , θT
2SN )T

obtained in experiment N will yield information on θT N = (θT
1T N , θT

2T N )T, and hence on δN .
We assume the θi are drawn at random from a multivariate normal distribution with mean µ and

covariance matrix φ (Figure 1). Even if the same drug is tested in two different populations, the values
of θi may differ, because populations may differ in levels of risk in the absence of treatment and because
they may differ in responsiveness to treatment due to variations in compliance or treatment-covariate
interactions. Therefore, in the formulations that follow, we regard the ‘drug study’ as the element of the
class, rather than the drug alone.

The objective is to use the conditional distribution of θN given the data on S in the treated and untreated
groups in study N , and given knowledge of µ and φ obtained from previous studies, to estimate δN and
obtain confidence intervals for it.

The basic data and analytical approach are outlined in Figures 1 and 2. Let (T1i j , S1i j ) be the response
of subject j in trial i in treatment Z = 1, for i = 1, . . . , K and j = 1, . . . , ni , and define (T2i j , S2i j )

similarly for Z = 2, i = 1, . . . , K and j = 1, . . . , mi . The surrogate responses may be vectors, but
we use scalar notation for simplicity. For z = 1, 2, the distribution of (Tzi j , Szi j ) depends on θzi =
(θT

zT i , θ
T
zSi )

T and possibly on other parameters γi . As indicated in Figure 1, data from experiment i
are used to estimate θi = (θT

1i , θ
T
2i )

T and the conditional covariance matrix cov(θ̂i |θi ) = �i . Because
(θ̂1i , θ̂2i ) are conditionally independent given θi , �i = diag(�11i , �22i ) is block-diagonal. We call σ22i

the submatrix of �11i corresponding to θ̂1Si and σ44i the submatrix of �22i corresponding to θ̂2Si .
We assume that the estimate θ̂i is obtained from estimating equations U1T i (θ1T i ) = ∑ni

j=1 U1T i j (θ1T i )

= 0, U1Si (θ1Si ) = ∑ni
j=1 U1Si j (θ1Si ) = 0, U2T i (θ2T i ) = ∑mi

j=1 U2T i j (θ2T i ) = 0, U2Si (θ2Si ) = ∑mi
j=1

U2Si j (θ2Si ) = 0. Note that U1T i (·) is not a function of (θ1Si , θ2T i , θ2Si , γi ), and other estimating equa-
tions are likewise functionally independent of parameters not in their argument. We assume sufficient
regularity conditions such that, conditional on θi and γi , θ̂i is normally distributed with covariance ma-
trix �i . Unconditionally, θ̂i is normally distributed with mean µ and covariance matrix φ + �i . The
covariance matrix �i can be estimated as a ‘sandwich’, �̂11i = n−1

i (ni − p − q)−1 B̂1V B̂T
1 , with the

entries of V given by V11 = ∑ni
j=1 U1T i j (θ̂1T i )U T

1T i j (θ̂1T i ), V12 = V21 = ∑ni
j=1 U1T i j (θ̂1T i )U T

1Si j (θ̂1Si )

and V22 = ∑ni
j=1 U1Si j (θ̂1Si )U T

1Si j (θ̂1Si ) (see e.g. Appendix B in Carroll et al., 1995). Here p and q

are the dimensions of θ1T i and θ1Si respectively, and B−1
1 = ni diag

{
E

(
∂U1T i j
∂θ1T i

)T
, E

(
∂U1Si j
∂θ1Si

)T}T
, which

can be estimated by
{∑ni

j=1

(
∂U1T i j
∂θ1T i

)T
,
∑ni

j=1

(
∂U1Si j
∂θ1Si

)T}T
. A similar sandwich estimate is available for

�22i . For example, in the simple multivariate normal case (Section 3.1), U1T i j (θ1T i ) = T1i j − θ1ti ,
U1Si j (θ1Si ) = S1i j − θ1Si , B−1

1 = −ni diag (Ip×p, Iq×q), and the estimate of cov(θ̂1T i , θ̂1Si ) is n−1
i {ni −

p − q}−1 ∑ni
j=1(T1i j − T1i )(S1i j − S1i )

T, where T1i and S1i are averages over j of T1i j and S1i j .

Now consider the new experiment, N . From data on S (Figure 1), we obtain estimates (θ̂1SN , θ̂2SN ,
σ̂22N , σ̂44N ). Let D and W be defined so that θT N = DθN and θSN = WθN . The 2p × 2(p + q)

matrix D has ones for the elements (1, 1), . . . , (p, p) and the elements (p + 1, p + q + 1), (p + 2, p +
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Fig. 1. Description of parameters, data, and estimates for the K experiments with data on true and surrogate outcomes
and for the new experiment, N , with data only on surrogates.

q + 2), . . . , (2p, 2p + q) and zeros elsewhere. The 2q × 2(p + q) matrix W has ones for the elements
(1, p + 1), (2, p + 2), . . . , (q, p + q) and the elements (q + 1, 2p + q + 1), . . . , (2q, 2p + 2q) and zeros
elsewhere. Because (θN , θ̂N ) are jointly normally distributed, with mean (µT, µT)T, variances φ and
φ + �N and covariance φ, (θT

T N , θ̂T
SN )T is normally distributed with mean {(Dµ)T, (Wµ)T}T, and with

covariance matrix defined by cov(θT N ) = DφDT, cov(θ̂SN ) = W (φ + �N )W T, and cov(θT N , θ̂SN ) =
DφW T. Hence, the conditional distribution of θT N given θ̂SN is normal with mean and covariance matrix
given by:

E(θT N |θ̂SN ) = Dµ + DφW T{W (φ + �N )W T}−1(θ̂SN − Wµ); (1)
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Construction of confidence intervals for the treatment effect on the true 
clinical response, δN

Available summary statistics

θ1SN, θ2SN, σ22N, σ44N     

Confidence interval is based on the conditional  
distribution of  g iven θ θ1 2TN TN,

, , ( , , ),θ θ µ, φ σ σ1 2 22 44SN SN N NΨ =
which is assumed  normal. 

Use bootstrap procedures to take

into account uncertainty in Ψ
for inference on . (See Section 4)δ N

Naive inference on  assumes δ N

is known and yieldsΨ Ψ=
sub-nominal coverage.
(See Sections 2 and 3)

^

^

^ ^

^^ ^ ^ (See Figure 1)

Fig. 2. Inference for the true treatment effect, δN , in the new experiment based on surrogate data in the new experiment
and knowledge of �.

cov(θT N |θ̂SN ) = DφDT − DφW T{W (φ + �N )W T}−1WφDT. (2)

Note that (2) only depends on �N through the elements (σ22N , σ44N ) corresponding to (θ̂1SN , θ̂2SN ).
If � = (µ, φ, σ22N , σ44N ) were known, then we could base inference about the treatment effect δN =

δ(θT N ) on equations (1) and (2) (see Figure 2). For example, if θ1T N and θ2T N are scalars and δN =
θ1T N − θ2T N = RθT N , where R = (1, −1), then the conditional distribution of δN is normal with mean
and variance given by:

M(�) = RE(θT N |θ̂SN ); (3)

V (�) = Rcov(θT N |θ̂SN )RT. (4)

A 95% confidence interval for δN would then be M(�) ± 1.96V 1/2(�). If δN were a nonlinear function
of the elements of θT N , its conditional distribution could still be determined analytically in some cases,
or more generally by simulating values of θT N from the conditional distribution based on (1) and (2).

In practice, � is unknown and must be estimated. We can estimate the block-diagonal covariance
matrix W�N W T = diag(σ22N , σ44N ) from individual-level study data, (Figure 1). To estimate (µ, φ),
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we rely on data from the studies i = 1, . . . , K . Because θ̂i has mean µ and covariance matrix φ +
�i , and because �i can be estimated from individual-level study data, various methods such as max-
imum likelihood, restricted maximum likelihood or empirical Bayes can be used to estimate (µ, φ)

(Figure 1).
Estimation of � means that the confidence intervals for δN described above will usually have sub-

nominal coverage (Figure 2). In Section 4, we describe bootstrap methods to adjust the intervals for
estimation of �.

3. SPECIAL CASES

3.1. The normal model

Suppose that given θi , (T1i j , S1i j , T2i j , S2i j )
T is normally distributed with mean θi and covariance ma-

trix diag(�11i , �22i ). Then θ̂i = (T1i , S1i , T2i , S2i )
T. The quantity T1i denotes the mean n−1

i

∑ni
j=1 T1i j ,

with S1i , T2i and S2i denoting similar averages over j . For z = 1, 2, we can estimate �zzi as the sample
covariance matrix of the terms (Tzi j , Szi j ), as indicated in Section 2. If the treatment effect of interest is
δN = θ1T N − θ2T N , then a confidence interval for δN given θ̂SN = (θ̂1SN , θ̂2SN ) = (S1N , S2N ) is given
by M(�) ± 1.96V 1/2(�), where M(·) and V (·) are given in (3) and (4). Because � must be estimated,
the plug-in prediction interval M(�̂) ± 1.96V 1/2(�̂) will have sub-nominal coverage. See Section 4 for
a bootstrap procedure that yields a wider confidence interval with nominal coverage.

The confidence interval based on (3) and (4) is like those proposed by BMBRG for linear mixed
models, except that they assume �11i = �22i . Daniels and Hughes (1997) base a confidence interval
on the conditional distribution of δN given S1N − S2N . Estimation of δN based on (S1N , S2N ) is more
efficient, at least if � is known, but the gains in efficiency are small in the following numerical examples.

Let the elements of φ be denoted by φk�. To illustrate these ideas for scalar (T, S), let φ11 = 1, φ22 = 4,
φ33 = 0.1, and φ44 = 0.4, and let the upper triangle of the correlation matrix for φ have first row
(1.0, 0.9, 0.7, 0.6), second row (1.0, 0.6, 0.7), third row (1.0, 0.9) and fourth row 1.0. Thus θ1S and θ2S

are strongly correlated with θ1T and θ2T respectively, and S should be an excellent surrogate. Assume that
a large number of previous studies permits us to estimate µ and φ precisely. Without data on (S1N , S2N ),
we would assert that θ1T N −θ2T N is normal with mean µ1T −µ2T and variance φ11−2φ13+φ33 = 0.6573.
Now assume in addition that the study of the new drug is large, so that (σ22N , σ44N ) are negligible com-
pared to the elements of φ. Then from (3), the conditional expectation of θ1T N −θ2T N given (S1N , S2N ) =
(θ̂1SN , θ̂2SN ) reduces to µ1T −µ2T +0.4799(S1N −µ1S)+0.5636(S2N −µ2S); the residual variance about
this predictor is 0.0880, and the fraction of variance explained is (0.6573−0.0880)/0.6573 = 0.866. BM-
BRG define this proportion of variance explained as the coefficient of determination R2

trial, and suggest it
as a figure of merit for a surrogate at the trial level.

In this example, had we used the regression on S1N −S2N instead, as in Daniels and Hughes (1997), we
would obtain the estimate µ1T −µ2T +0.4644(S1N −µ1S +S2N −µ2S), with residual variance 0.0902 and
fraction of variance explained 0.863. As one would expect, the fraction of variance explained decreases
rapidly as the correlations between (θ1T , θ2T ) and (θ1S, θ2S) diminish. Using 0.7 for these correlations in
the previous example, instead of 0.9, we find that the fraction of variance explained drops to 0.398 for (3)
and to 0.350 for the regression on S1N − S2N .

Even a good surrogate in the meta-analytic framework is not nearly as efficient as direct data on
(T1N , T2N ). Arguments similar to those above show that given (T1N , T2N , µ, φ, σ11N , σ33N ), θ1T N −θ2T N

is normal with mean and variance similar in form to (3) and (4), where σ11N and σ33N are submatrices
of �11N and �22N corresponding to θ̂1T N and θ̂2T N respectively. As the sample size of experiment N
increases, σ11N and σ33N converge to zero, and the estimate of θ1T N − θ2T N reduces to T1N − T2N with a
variance that tends to zero. Data from a surrogate are qualitatively weaker because as the sample size of
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experiment N increases, equation (4) tends to a value greater than zero. Indeed, no matter how large K
is and no matter how large the new study is, one may be left with an irreducible residual variance that is
unacceptably large.

3.2. Dichotomous outcomes

Let Tzi j be the clinically relevant dichotomous response on subject j , study i , treatment arm z, and let
Szi j be the corresponding dichotomous surrogate. The pairs (Tzi j , Szi j ) follow a multinomial distribution
with index 1.0 and parameters πzi = (πzi11, πzi10, πzi01, πzi00) corresponding to the outcomes (1, 1),
(1, 0), (0, 1), and (0, 0).

We transform to parameters θ that might plausibly have a multivariate normal distribution by setting
θzT i = log{(πzi11+πzi10)/(πzi01+πzi00)} and θzSi = log{(πzi11+πzi01)/(πzi10+πzi00)}. Note that these
parameters are the logarithms of marginal odds for T and S under treatment z. The two multinomials de-
pend additionally on nuisance parameters γi = [log{π1i11π1i00/π1i10π1i01}, log{π2i11π2i00/π2i10π2i01}]
that we do not need to estimate.

Assuming θi is normally distributed, the estimate θ̂i with components such as θ̂1T i = log{T1i/(1−T1i }
is normal with mean µ and covariance matrix φ + �i , as in Section 2. The covariance matrix �i can be
estimated as in Section 2 by setting U1T i j = T1i j − exp(θ1T i ){1+ exp(θ1T i )}−1 and defining U1Si j , U2T i j

and U2Si j similarly. Note that although the nuisance parameters γi determine �i in part, we can estimate
�i without estimating γi .

If the estimated treatment effect is the log odds ratio δN = θ1T N − θ2T N , (3) and (4) can be used to
construct a confidence interval of the usual form, with modification in Section 4 to accommodate estima-
tion of �. Suppose instead we are interested in the risk difference δN = exp(θ1T N )/{1 + exp(θ1T N )} −
exp(θ2T N )/{1 + exp(θ2T N )}. If � were known, we could simulate the conditional distribution of δN

given θ̂SN by taking samples from the conditional distribution of θT N with mean (1) and variance (2). A
confidence interval for δN could be based on this simulated distribution. Adaptations for estimation of �

are described in Section 4.

3.3. Marginal models for survival data and other complex data structures

Suppose T represents the time to death following cancer treatment and S the time to an event such as
cancer recurrence. Note that S does not censor T , but if T precedes S, we assume that S is randomly
censored at that time. Let F(t |θzT i ) and F(s|θzSi ) be the marginal distributions in experiment i on treat-
ment z of T and S, respectively. For example, Tzi j might have a Weibull distribution pr(Tzi j ≤ y) =
1 − exp(−λzT i yαzT i ). The parameterization θzT i = (ln(λzT i ), αzT i )

T and θzSi = (ln(λzSi ), αzSi )
T might

plausibly conform to the multivariate normal distribution. These parameters define only the marginal dis-
tributions of T and S, not their joint distributions. We do this to avoid the complexity and difficulty of
specifying and validating such joint distributions.

Estimates of these parameters are obtained by solving marginal score equations. The methods of Sec-
tion 2 then apply immediately. In this example, the treatment effect might be expressed by the difference
in median survivals δN = {ln(2)/λ1T N }α1T N − {ln(2)/λ2T N }α2T N . This is not a linear function of θ1T N

and θ2T N . Nonetheless, if � were known, the distribution of δN given (S1N , S2N ) could be obtained by
simulating values of θT N given θ̂SN from (1) and (2). In Section 4 we describe adaptations for estimated
�. This formulation requires that any censoring of T1i j be independent of T2i j , and similarly for S1i j and
S2i j , but the four censoring distributions need not be the same.

Extending this example, one can use piecewise exponential models in which θzT i and θzSi are vectors
of log hazard rates. In this context, δN might be the difference in median survival, the difference in
estimated 5-year survival, the ratio of 5-year cumulative hazards, a weighted average of interval-specific
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Table 1. Estimated coverage of θ1T N − θ2T N for the Carroll–Ruppert bootstrap procedure in Section 4.1

Number of studies, K Estimated coveragea Average bootstrap
√

var(v)
b

Bootstrap procedurec Assuming v = 1.96 estimate of v̄

5 0.960 0.643 7.72 3.88

10 0.930 0.656 4.04 0.65

25 0.950 0.825 2.44 0.31

50 0.948 0.904 2.20 0.10

100 0.943 0.923 2.04 0.003
aBased on 1000 independent simulations. bThis is the square root of the average estimate of var(v), as described in
Section 4.1. c B = 100.

hazard ratios, which estimates a relative hazard, or some other function of θ1T N and θ2T N .
Another interesting example with survival data would be to let S represent survival information up to

2 years of follow-up and let T represent uncensored survival data. Then θzT i could contain piecewise
exponential parameters as before, and θzSi contains a subset of the parameters in θzT i that define survival
over the first 2 years. In a new trial, data over 2 years on S can be used to estimate δN , the difference in
5-year survival rates.

Repeated measures can be handled in a similar way by letting θzT i be parameters that define the evolu-
tion of the mean true response over time, while θzSi are parameters that define the evolution of the mean
surrogate response. Here δN could be the difference in mean true response at a fixed time point, or some
other quantity such as the difference in slopes of the two mean functions.

These methods, which are analogous to the GEE approach of Liang and Zeger (1995), are valid for
estimating equations other than those implied by marginal models. For example, a normal marginal model
yields an estimating equation for the mean. This mean may be a useful summary statistic even if the data
do not follow a normal distribution. Since the sample standard error, or a standard error obtained by
sandwich methods, is ‘robust’, i.e. consistent, our procedures are robust to misspecification of the model,
provided the estimated parameters make sense. Correct modeling of the distribution of θi is far more
critical.

4. BOOTSTRAP CONFIDENCE INTERVALS

4.1. Linear treatment effect

In Sections 2 and 3, we ignored variability in estimates of µ, φ, σ22N , and σ44N , which collectively we
called � . The previous variance estimates or conditional distributions are therefore only justified when a
large number of previous studies have been conducted and when the current study, N , is large, so that these
quantities are known with high precision. We now present data showing that ignoring the variability in �̂

can lead to seriously misleading inference (see Table 1). To solve this problem, we propose a bootstrap
procedure to estimate the variance of the conditional distribution of θ1T N − θ2T N in Section 2 that results
from plugging in estimates of unknown components of �, and we use the method of Carroll and Ruppert
(1991) to construct a confidence interval for θ1T N − θ2T N . Later we present alternative bootstrap methods
for a more general treatment effect δN (θ1T N , θ2T N ).

Each cycle of the bootstrap has two phases. First, if the original data had K previous studies with
complete data, then in each bootstrap replication, K such studies are re-sampled with replacement from
the previous studies. For each re-sampled study, a new set of data is obtained. In particular, if the i th study
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is re-sampled, a new set of ni observations is obtained by re-sampling treated subjects with replacement,
and a new set of mi observations is obtained by re-sampling control subjects with replacement. We also
resample the observations in the current study, N , in the same way to obtain new estimates of σ22N and
σ44N . Suppose we obtain B new bootstrap data sets in this way. For the bth set, we obtain the estimates
of these parameters, which collectively we call �̂b. Holding θ̂SN fixed, we obtain the plug-in estimate Mb

from equation (3) and plug-in variance estimate Vb from equation (4). The variance of the conditional
distribution of θ1T N − θ2T N minus its plug-in estimate is the expectation over (µ̂, φ̂, σ̂22N , σ̂44N ) of the
conditional variance (4) plus the variance over (µ̂, φ̂, σ̂22N , σ̂44N ) of the conditional expectation (3) with
estimated parameters plugged in. These two components of variance can be estimated, respectively, by
B−1 ∑

b Vb and by (B − 1)−1 ∑
b(Mb − M)2.

In order to obtain a confidence interval on θ1T N − θ2T N , we use the method of Carroll and Ruppert
(1991). Because θ1T N − θ2T N is independent of �̂, we can compute the expectation:

E{H(�̂, �, v)} ≡ E(�[{M(�̂) − M(�) + vV 1/2(�̂)}V −1/2(�)])
−E(�[{M(�̂) − M(�) − vV 1/2(�̂)}V −1/2(�)]) = 1 − α (5)

for some non-negative v, where � is the standard normal distribution function, M(�̂) is the mean given
by equation (3) with θ̂SN held fixed, V (�̂) is the variance given by equation (4), and 1 − α is the desired
coverage of the confidence interval. The expectation is over the distribution of �̂. The aim is to solve (5)
for v to create the confidence interval M(�̂)± vV 1/2(�̂). The previous bootstrap can be used to estimate
the desired v as the solution to

B−1
∑

b

H(�̂b, �̂, v) = 1 − α. (6)

If K , nN , and m N are large, so that �̂ has little variability, v is nearly 1.96 for 1 − α = 0.95. With small
K , it can happen that V (�̂b) ≤ 0, in which case we discard that bootstrap sample and replace it with
another sample for which V (�̂b) > 0.

To determine how well this procedure works and to estimate the effect of uncertainty in �̂ on the width
of the prediction interval, compared to the case where � is known, we conducted a simulation study based
on the normal model (Section 3.1). To simplify calculations, we assumed that �11i and �22i were fixed
and known for i = 1, 2, . . . K and for i = N . In fact, �i = diag(�11i , �22i ) equaled [0.1, .1, 0, 0;
0.1, 0.2, 0, 0; 0, 0, 0.1, 0.09; 0, 0, 0.09, 0.1], where successive rows are separated by semicolons. Thus
µ̂ was the mean of the K vectors θ̂i = (T1i , S1i , T2i , S2i )

T, and φ was estimated by subtracting known
elements of �11i and �22i from the sample covariance of θ̂i based on the K previous studies. We chose
φ = [1, 1.8, 0.7, 1.2; 1.8, 4, 1.2, 2.8; 0.7, 1.2, 1, 1.8; 1.2, 2.8, 1.8, 4], and B = 100.

To assess the performance of the bootstrap procedure in this case, we generated 1000 independent
data sets for each K = 5, 10, 25, 50, and 100. The data on the K earlier studies were generated
directly from the distribution for θ̂i , and the data for i = N were generated from the distribution of
(θ1T N , S1N , θ2T N , S2N )T. The MATLAB (1997) random number generator ‘mvnrnd’ was used to pro-
duce pseudo-normal variates.

The Carroll and Ruppert (1991) bootstrap procedure yielded coverage near the nominal 0.95 level even
with K = 5 (Table 1). In contrast, an analysis that assumes � is known and therefore uses v = 1.96
has empirical coverage substantially below 0.95 for K = 5, 10, 25, and 50. For K = 5, the coverage
probability even with v = 7.0 was only 0.870 (data not shown), compared to a coverage probability of
0.960 for the Carroll-Ruppert procedure (Table 1). For K = 100, the estimated coverage with v = 1.96
was 0.923 with 95% confidence interval (0.846, 0.940). These data indicate that in most applications,
where K is limited, variability of �̂ must be taken into account to obtain valid confidence intervals.
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To determine the average value of estimates of v with B = 100, and to see how variable the estimates
of v would be for B = 100 for a given data set, we simulated 100 additional data sets for each K = 5,
10, 25, 50, and 100. For each data set, s, we repeated the bootstrap procedure (with B = 100) 100 times
and computed the mean and sample variance of these 100 estimates of v for data set s. We then computed
the average mean (called v̄) and average sample variance (varv) over s = 1, 2, . . . , 100 (see Table 1). For
K = 100, the average v = 2.04 is not much greater than the nominal 1.96, whereas for K = 5, v = 7.72
represents a huge loss of precision (Table 1). Thus, although the bootstrap procedure covers θ1t N − θ2t N

at nominal levels for K = 5, it does so by expanding the width of the prediction interval enormously. For
K = 5, the ratio 7.72/1.96 = 3.9 indicates the loss in precision from having to estimate �.

With B = 100, there is considerable variability in the bootstrap estimate of v for small K , as indicated
by

√
varv (Table 1). For K = 100, the ratio of

√
varv to v is 0.003/2.037 = 0.001, whereas, for K = 5,

this ratio is 0.502. This suggests that larger bootstrap samples should be used for small K , even though
the coverage is adequate with B = 100. With B = 1000 and K = 5, we found that the ratio was only
0.104.

4.2. General treatment effects

Alternative methods are needed when δN is not a linear function of (θ1T N , θ2T N ). We therefore pro-
pose the following parametric bootstrap procedure. Obtain bootstrap samples �̂b for b = 1, . . . , B as
described in Section 4.1. For each �̂b draw an observation from the conditional distribution, (1) and (2),
of θT N given θ̂SN and �̂b, and then compute δN ,b. Combining these B values gives an estimate Ĝ B of
G(δN |θ̂1SN , θ̂2SN , �), the conditional distribution function of δN given θ̂1SN , θ̂2SN and �. This approach
takes into account the variability that is introduced by using �̂ in place of � when calculating δ̂N ,b. The
confidence interval for δN is {Ĝ−1

B (α/2), Ĝ−1
B (1 − α/2)}.

To show that the method yields nominal coverage, we first tested it on δN = θ1T N − θ2T N , using the
parameters presented in Section 4.1. The coverage was within the sampling error of nominal levels, as for
the Carroll–Ruppert procedure, but the confidence intervals were somewhat wider. For K = 25 previous
studies, for example, the average length of the confidence intervals for the treatment differences was 1.51
for the parametric bootstrap and 1.40 for the Carroll–Ruppert bootstrap procedure. Both these procedures
for K = 25 yielded confidence intervals about 25% longer than would be the case if � were known.

We applied this procedure to obtain confidence intervals for the treatment effect δN = exp(θ1T N )/{1+
exp(θ1T N )} − exp(θ2T N )/{1 + exp(θ2T N )}, defined for the binary outcome example (Section 3.2). To
be specific, we choose π1i11 = 0.6, π1i10 = 0.2, π1i01 = 0.05, π1i00 = 0.15 and π2i11 = 0.5, π2i10 =
0.1, π2i01 = 0.1, π2i00 = 0.3. Application of the delta method and using ni = mi = 1000, gives the
covariance matrices �11 = [0.0625, 0.0219; 0.02198, 0.04396] and �22 = [0.0416, 0.02431; 0.02431,
0.0416]. The matrix φ was chosen to be the same as in the linear example.

Table 2 presents the average length of the confidence intervals for different numbers of previous studies,
and shows that the parametric bootstrap yielded near nominal coverage for this nonlinear treatment effect,
except for the case K = 5. In that case, the observed coverage, 0.908, fell below the range expected to
cover 95% of the simulated results, (0.931, 0.969). This is not surprising, as the empirical distribution
function based on so few observations is a poor estimate of the true G.

5. EXAMPLE

Our methods are illustrated using data from the Regression Growth Evaluation Statin Study (REGRESS)
trial (see Jukema et al., 1995), a placebo-controlled multicenter study to assess the effects of two years of
treatment with pravastatin on progression and regression of coronary atherosclerosis in men scheduled for
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Table 2. Estimated coverage of δN = exp(θ1t N )/{1 + exp(θ1t N )} − exp(θ2t N )/{1 + exp(θ2t N )}, for the
parametric bootstrap procedure described in Section 4.2

Number of studies, K Estimated coveragea Average length of the Ratio of CI widthsb

confidence intervals

5 0.908 0.8201 5.26

10 0.934 0.5071 3.25

25 0.921 0.4176 2.68

50 0.948 0.3264 2.09

100 0.962 0.2545 1.63
aBased on 500 independent simulations, each with B = 5000 bootstrap samples. b This is the ratio of the width
of the 95% confidence interval from the bootstrap procedure to that assuming that � is known, namely 0.156.

arteriography who had a total cholesterol in the range 4–8 mmole/L (155–310 mg/dL). At baseline and
after two years of treatment a coronary angiogram was made. Serum cholesterol was measured at base-
line and during follow-up, and events were recorded. The primary endpoint, Ti j , is the change in average
mean coronary artery segment diameter over the two-year trial period. The surrogate outcome, Si j , is the
change in serum cholesterol during follow-up. Histograms of T and S indicate that the differences can be
assumed to arise from a bivariate normal distribution.

Although these data did not come from a series of independent clinical trials, as in a true meta-analysis,
we treated the centers as if they were independent studies. The first 10 centers correspond to ‘previous’
studies with full information on the surrogate and primary endpoints. The eleventh center was chosen to
represent the ‘new’ study, where only surrogate information is available.

After eliminating patients with missing information, there were 61, 32, 70, 48, 98, 67, 52, 21, 96, 58,
and 32 subjects in each ‘study’. Because the sample sizes in the 10 ‘previous studies’ are small, and be-
cause the between-center variation in these data is not large, the estimate of φ, φ̂ = ĉov(T1i , S1i , T2i , S2i )−
1
K

∑K
i=1 �̂i/ni was not positive definite. To obtain more realistic sample sizes for the individual studies,

we re-scaled the individual sample size so that on average they had the same size as the original trial.
The resulting desired sample sizes were 670, 352, 770, 528, 1078, 736, 572, 230, 1056, 638, and 352 (Ta-
ble 3). In order to obtain these larger ‘samples’, we estimated the individual-level center-specific and
treatment-specific means and covariances. Assuming bivariate normality, we generated 22 different sam-
ples with equal numbers in the pravastatin and placebo groups in each ‘study’. Table 3 presents the total
sample sizes, the T1i , S1i , T2i and S2i , and the estimated correlation coefficients, based on the individual
level data in each ‘study’ and treatment group.

The estimated treatment effects for the ‘new’ study (center 11) are T1N −T2N = −0.0725−(−0.1106) =
0.0381 mm with 95% confidence interval [−0.0138, 0.0900] based on the true responses in that study.
The estimated treatment effect based on the surrogate data is 0.0402, with the naive confidence interval
[−0.0552, 0.1355] from equation (4) . The bootstrap procedure from equations (5) and (6) with B = 500
yields ν = 3.5910 and the more realistic 95% confidence interval [−0.1346, 0.2149]. The width of this
interval, 0.3495, is 3.3671 times greater than the width of the interval based on T1N − T2N , illustrating a
very serious loss in efficiency from relying on the surrogate.

In the previous calculations, we let center 11 correspond to the ‘new’ study. When, instead, we chose
center 5, which has the largest sample, to represent the ‘new’ study, the loss in efficiency comparing the
surrogate approach to the true measurement T1N − T2N was even more dramatic. The estimate based on
the true response was 0.0074 with 95% confidence interval [−0.0156, 0.0303]. The estimate based on
equation (3) was 0.0465 with bootstrap 95% confidence interval [−0.2144, 0.3074], and the ratio of the
widths of those two confidence intervals was 11.37.
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Table 3. Data based on treatment- and center-specific parameters estimated from the REGRESS trial

Center Total sample size (T1i , S1i )
a (T2i , S2i ) Individual-level correlation

Pravastatin Placebo

1 670 (−0.0133, −1.3800) (−0.1597, 0.0712) 0.0378 0.0863

2 352 (−0.0860, −1.3875) (−0.0842, −0.0348) −0.2817 −0.3352

3 770 (−0.0772, −1.2829) (−0.1128, 0.1957) −0.0102 −0.3044

4 528 (−0.0274, −1.2622) (−0.1712, 0.2126) −0.1807 0.6712

5 1078 (−0.0515, −1.2319) (−0.0588, 0.2517) 0.0507 0.2116

6 736 (−0.1235, −1.0390) (−0.0987, 0.3215) −0.0885 0.2863

7 572 (−0.0694, −1.3673) (−0.0960, 0.1006) 0.2023 0.1790

8 230 (0.0029, −0.9688) (−0.0374, 0.0827) −0.5844 0.3586

9 1056 (−0.0361, −1.3233) (−0.0944, 0.0644) −0.0780 −0.0650

10 638 (−0.1250, −0.9502) (−0.1302, 0.0010) −0.0181 −0.0224

11 352 (−0.0725, −1.2008) (−0.1106, −0.0538) 0.0420 0.0069

Means 634.7 (−0.0617, −1.2176) (−0.1049, 0.1103) −0.0826 0.0975

a Units of T are mm and units of S are mmole/L.

The original study by Jukema et al. (1995) estimated the treatment effect as 0.04 mm with confidence
interval [0.01, 0.07] and significance p = 0.019. Note that if the surrogate marker had been used, realistic
confidence intervals such as those above would have been much too wide to demonstrate a treatment effect
on the primary outcome. Unfortunately one can not compensate effectively in the surrogate approach by
increasing the size of the studies, because much of the variation is due to φ. Increasing the number of
‘previous’ studies can reduce the variability of the estimate of φ and improve precision somewhat. To take
an extreme case, suppose there had been hundreds of previous studies, so that we can assume φ is known
without error. Suppose also that the new study was very large so that σ22N and σ44N were negligible.
Using the estimate of φ obtained from the first 10 studies in Table 3, we estimate the variance of the
surrogate-based estimate of treatment effect from equation (3) as 0.0023, which corresponds to a width of
the 95% confidence interval of 0.188 mm instead of 0.06 mm found in the original study. Thus, no matter
how many previous studies were available and no matter how large the new study was, this surrogate
would not yield a sufficiently precise estimate of treatment effect.

If we assume that φ is known without error, we can calculate the proportion of variance explained by
the surrogate, illustrated in Section 3.1, as (0.0028−0.0024)/0.0028 = 0.1476. In this calculation, 0.0028
is the variance of the estimated treatment differences θ̂1T N − θ̂2T N = µ̂1T − µ̂2T based on the ‘previous’
studies, but without any use of surrogate data, and 0.0024 is the smaller variance that results from using
surrogate data in equation (3). If we assume in addition that the new trial is so large that σ22N = σ44N = 0,
then the proportion of variance explained becomes (0.0028 − 0.0023)/0.0028 = 0.1786. This quantity is
the coefficient of determination, R2

trial, discussed by BMBRG.
One would hope that the changes in cholesterol would be strongly negatively correlated with the

changes in arterial diameter. The correlation between the 11 values of T1i − T2i and S1i − S2i in Ta-
ble 3 is −0.3049. Note that the center- and treatment-specific individual-level correlations are variable
and are, on average, much smaller than 0.3049 in absolute value. This variation indicates that cholesterol
change is not a reliable indicator of arterial diameter change at the individual level, even though it has
some predictive value at the trial level.
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The φ in the present example is probably not typical of the between-study variation that one would find
in a true meta-analysis covering a variety of drugs and studies. The dispersion of θi in the present study is
reduced because only a single agent is being evaluated and all the study centers are adhering to the same
protocol.

6. DISCUSSION

This work was motivated by the studies of Daniels and Hughes (1997) and Buyse et al. (2000), who
used the meta-analytic approach. This paper extends the work of BMBRG by introducing methods for a
very general class of models that only require that summary parameters of interest be specified (Section 2).
These methods could be applied, for example, to analyze separate piecewise exponential survival curves
for T and S in treated and untreated groups. Moreover, these method are easily extended to allow the
surrogates to be vector valued, even if T is a scalar. In the special case of the normal model (Section 3.1),
we allow a more general covariance structure for �i i than that used by BMBRG. Unlike earlier work,
our study also indicates the critical importance of taking into account the uncertainty in estimates of the
parameters that govern the distribution of θi (Section 4), and we introduce bootstrap methods to take such
variability into account.

The meta-analytic approach relies very little on modeling the relationship between T and S at the
individual level. Instead, inference is based on the empirical distribution, in a series of previous studies,
of summary parameters, such as group means, that characterize the responses T and S in treated and
untreated groups. In this paradigm, the ability to predict the treatment effect of a new drug depends
principally on how tightly summary parameters for T are related to summary parameters for S in other
studies of drugs from the same class.

BMBRG proposed a coefficient of determination based only on elements of φ to measure the adequacy
of a surrogate. This trial-level criterion can be extended to cover other measures of treatment effect, δN ,
such as effects on a logit scale, by calculating the fractional reduction in trial-level variance of the estimate
of δN that results from using θ̂1SN and θ̂2SN . In applications, however, the surrogate will not perform as
well as indicated by the coefficient of determination or its extension because φ must be estimated, which
can seriously degrade the precision of estimates based on the surrogate (Section 4). A more realistic esti-
mate of the reduction in variance from using θ̂1SN and θ̂2SN could be based on the bootstrap (Section 4).
The bootstrap estimate of the variance of δ̂N based only on data from previous studies can be compared
to the bootstrap estimate of the variance of δ̂N based on both the previous studies and on θ̂1SN and θ̂2SN .
In these calculations, one would assume �N = 0.

An alternative approach to estimating treatment effects could be based on strong assumptions about the
ability of S to predict T at the individual level. In an ideal case, T would be conditionally independent of
any treatment given S (Prentice, 1989). Such an assumption is essential for proving that hypothesis tests of
no treatment effect based on S are valid for testing for treatment effects on T (Prentice, 1989). Moreover,
if we assume that T is conditionally independent of any treatment and of any other factors, given S,
and if the conditional distribution F(t |s) has been estimated, for example from untreated subjects, then
for any other treatment, Z = z, the relevant marginal distribution can be calculated from surrogate data
on F(s|z) via F(t |z) = ∫

F(t |s)d F(s|z). Such a strong assumption would need to be justified by a
thorough understanding of the biological relationship between S and T , and by assurance that no factor
influences T except through its influence on S. Even if several previous studies indicated little dependence
of F(t |s, z) on z, there remains a possibility that a new drug might influence this relationship (Fleming
and DeMets, 1996). To relax this strong assumption, some researchers have turned to the concept of
percentage of treatment effect explained by the surrogate (Freedman et al., 1992; Lin et al., 1997; Buyse
and Molenberghs, 1998), but this quantity does not allow one to predict the effect of a new treatment
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on T from data on its effect on S. The meta-analytic approach avoids dependence on the assumption of
conditional independence at the individual level by relying, instead, on an empirical evaluation of group-
level summary statistics.

Meta-analytic calculations in this paper can be used to determine whether a new study based on S
can yield sufficiently precise estimates of the treatment effect on T to be useful. In particular, a predic-
tion interval based on (2) or (4) may be too wide, and the corrected prediction interval, which takes the
uncertainty of plug-in estimates into account, will be even wider (Section 4).

We have glossed over a complication in Sections 2 and 3. The variables (Tzi j , Szi j ) depend not only
on θi but also on other nuisance parameters, γi (Figure 1). For example, in Section 3.1, γi , ni and mi

define the covariance �i . This covariance can be estimated without estimating γi , however. Likewise, �i

is estimated in Section 3.2 without estimating the nuisance parameters. In the class of problems discussed
in Sections 2 and 3, the parameters of the asymptotic normal distribution for θ̂i can be estimated without
knowledge of γi , though, in fact, the distribution of θ̂i is conditional on the unknown γi . Thus, inference
on δN can be carried out as in Sections 2 and 4 without estimating γi .

In Sections 2 and 3 we have assumed that the estimating equation for θ1T i is functionally independent
of θ1Si , θ2T i , θ2Si and γi , and other estimating equations likewise depend only on a single component of
θi . If one wants to make additional assumptions on θi , such as a proportional hazards assumption between
the parameters θ1T i and θ2T i , which might correspond to piecewise exponential log-hazards, for example,
then the estimating equations might depend on more than one set of parameters, such as θ1T i and θ2T i . The
procedures in Section 2 can be generalized to cover this case, although �i would no longer necessarily
be block- diagonal. Assuming �i can be estimated by an extension of the methods in Section 2, however,
the formulas in the paper would remain unchanged, except that W�N W T is no longer block-diagonal,
because it must also include within experiment covariance matrices σ24N = cov(θ̂1SN , θ̂2SN ), and � =
(µ, φ, σ22N , σ24N , σ44N ).

Although the meta-analytic approach offers an empirical basis for estimation, several challenges must
be overcome in order for this approach to be useful. Indeed, some of these difficulties may seriously
degrade the validity and utility of this approach.

First, it is difficult to define the class C of ‘similar’ drug studies to which the current study N belongs.
Presumably, the new drug has the same supposed mechanism of action as other drugs in C , and the same
types of control treatments are used in all studies. However, the underlying parameters θi will vary from
study to study in class C not only because the drugs differ, but also because the populations studied differ.
Critics may dispute the definition of C and the previous studies included in the analysis. Such criticism is
common in meta-analyses to combine data on main endpoints.

Second, there may have been too few previous studies in C with complete data on T and S to permit
reliable estimation of the distribution governing parameters θi . This can have a very deleterious impact
on the precision of the estimated treatment effects (Section 4). Indeed, the results in Tables 1 and 2
indicate that prediction intervals that properly take uncertainty of �̂ into account are much wider than
naive prediction intervals based on the assumption that �̂ is known when K is 10 or less. More simulations
are needed to examine the range of parameters over which such conclusions hold, but these findings
resemble those for empirical Bayes confidence intervals (Laird and Louis, 1987).

Third, it may be difficult to obtain individual-level data from previous studies that are needed to esti-
mate �11i and �22i . This may be a matter of secondary importance if between-study variation is much
greater than within-study variation (see Daniels and Hughes, 1997).

Fourth, the precision of estimated treatment effects from the meta-analytic approach is limited by
between-study variation in the parameters θi in C , or, in other words, by the nature of φ, even when �

is known. In situations with substantial between-study variation in (θ1T i , θ2T i ), even a surrogate that is
strongly correlated with T can yield much less precise estimates of treatment effects on T than estimates
based on the main endpoint T itself (Sections 3.1 and 4). No matter how many studies one includes in the
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meta-analysis, and no matter how large the new study is, the use of a surrogate may result in an irreducible
variance of the estimated treatment effect, governed by φ, that is unacceptably large.

Fifth, meta-analytic approaches require realistic models for the distribution of θi . The multivariate
normal model in Section 3.1 was chosen for mathematical convenience, but it may offer a reasonable
approximation after transformation to a suitable set of parameters θ ; see, e.g., Section 3.2. Other mod-
els could be used but the analysis of such models could be quite complicated and would often require
computer-intensive techniques, such as Markov chain Monte Carlo (Daniels and Hughes, 1997). Nonethe-
less, an important issue for the meta-analytic approach is the sensitivity of the inference to modeling the
distribution of θi .

Sixth, there is considerable need for research on methods to apply the meta-analytic approach to other
types of data, such as data on repeated measures and survival data. Although the ideas in Section 2
and 3 may be useful in these more complex settings, there are unresolved issues in defining the surrogate
and in modeling joint or marginal distributions of T and S. There is also a need to define the strengths
and weaknesses of frequentist, empirical Bayes, and Bayesian approaches for analysis of the hierarchical
system. Other improvements, such as the use of covariates to adjust for between-study variation in θi also
warrant study.

Finally, there is the problem of unanticipated delayed toxicity that is not encompassed by the main
endpoint T . For example, suppose T is the time to cancer recurrence and S is the initial degree of tumor
shrinkage following cancer treatment. A study that is long enough to measure time to recurrence affords
a greater opportunity to detect an unanticipated delayed toxicity than a shortened study based on the
surrogate. Moreover, assessment of a new treatment may require evaluating a variety of true endpoints so
that T becomes a vector. In these cases, the use of surrogates becomes more complex and less attractive.

Despite these many potential obstacles, the meta-analytic approach warrants further methodological
study and efforts at practical implementation. Such studies will determine whether the approach has clin-
ical utility. Even under propitious circumstances, however, our calculations (Sections 3.1 and 4) indicate
that meta-analyses of surrogates will lead to much less precise estimates of treatment effect on T than
relying on true endpoints, and the difficulty of defining an appropriate class of ‘similar’ studies will also
make reliance on surrogates less convincing.
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